Momentum, vorticity and transport:
Considerations in the design of a finite-volume
dynamical core

Todd D. Ringler

Abstract This chapter provides an end-to-end discussion of issl&®deto issues
in the design and construction of dynamical cores. The gorgrequations of mo-
tion are derived from basic principles cast in the Lagrand@iame of motion. The
Reynolds Transport Theorem is derived so that these camtsmmstatements can be
recast in their weak, integral form in the Eulerian refeeframe. Special attention
is given to the relationship between the momentum equatidivarticity dynamics.
The principles of conservation of circulation and voriicite derived in the contin-
uous system. It is demonstrated that the kinematic priasiptlated to circulation
and vorticity can be carried over exactly into the discrgtgtesm. The analysis is
conducted in an idealized, two-dimensional setting thatésnt to serve as a pro-
totype system for the consideration of the full three-disienal general circulation
of the atmosphere and ocean.

1 Introduction

More than forty years after the first global models for thedation of the fluid
motion in the atmosphere and ocean appeared, researchéntonstruction of at-
mosphere and ocean "dynamical cores” has never been maaatiffhe dynamical
core refers to the fluid-dynamic core of an atmosphere orrogeaeral circulation
model; the part of the model that evolves the distributiomafss, momentum and
tracer constituents forward in time. The diversity of afgmioes that are being ex-
plored to simulate the evolution of mass, momentum and itsanethe atmosphere
and ocean systems points to both the richness and compdéxtg problem.

The motivation for this chapter is to present an "end-to*efielv in the design
of numerical models used for the simulation of fluid motiorthe atmosphere and
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ocean. The process starts with a rigorous construction asdrigtion of the un-
derlying continuous system. The process ends with the fépeain of a numerical
model that is suitable for its target application. Both tlegibning and end are es-
sentially applied math activities, with the former mangairig continuous equations
and the latter manipulating discrete equations. In betweese ends is the "art” of
constructing dynamical cores. If the process were as siagpliiscretizing a set of
continuous equations, we would not see the vibrancy in dycelmore develop-
ment that we see today. A host of subtle, yet profound, questsuch as "which
form of a continuous equations should be the starting poiritfe discrete model?”
fall squarely in the middle of the end-to-end design proc€&hkss chapter explores
some of those questions in order to illuminate the intrieaaf the decisions that
have to be made in the design process.

The price-to-be-paid for this end-to-end view is scope. Wiahevant aspects of
the design process have been omitted in order to contairigbess$ion to an appro-
priate length. The discussion is focused primarily on onpdrtant component of
a dynamical core: the prediction of momentum. This provdsetan important and
rich topic for several reasons. First, since the velociat th derived from momen-
tum acts as the transport velocity for the mass and tracéds fierobust simulation
of velocity is a prerequisite for any viable dynamical cdfarthermore, as the ve-
locity field responds to changes in the applied forces it nalst satisfy certain
kinematic conditions, such as conservation of vorticigtiSying the desire to ac-
curately modeF = ma while also accommodating important kinematic constraints
is a challenge for any numerical model. And finally, the migjasf the nonlinearity
in dynamical core simulations arises from the simulatiorthef evolving velocity
field. In many ways, getting the evolution of momentum "rigistthe hardest part
in the design and construction of a dynamical core.

The analysis presented below is conducted in a very simptedimensional
framework and is, in some ways, quite removed from the gldirele-dimensional
motions that compose the atmosphere and ocean generdhtiong. As such, it is
important to address the relevance of this chapter to thestimapof the more com-
plicated three-dimensional systems. First and foremiostahalysis conducted here
is a prerequisite for the construction of a robust threeedlisional model. In that,
what follows below could be considered a set of necessatyditsufficient, prop-
erties of robust three-dimensional models of atmosphedecaean circulations.
Since the general circulation of the atmosphere and oceaur®primarily along
a vertical stack of two-dimensional sheets, it is folly tgpgase that a numerical
methods that performs poorly in the solution of the two-digienal system will
perform acceptably in the solution of the three-dimendisgstem. Second, while
the two-dimensional system might seem trivial in some refspenany numerical
methods used in the modeling of geophysical fluid dynamitstiart when viewed
from the perspective of vorticity dynamics. Vorticity dynas largely represent the
"slow modes” of these system where relatively small truiocegérrors can accumu-
late and, eventually, completely corrupt the simulatione Btruggle to control the
form of truncation error with respect to vorticity dynamisss important today as it
was when Arakawa wrote the seminal paper on the topic in 186gkéwa, 1997).
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And finally, this chapter is meant as an introduction to theospt of designing nu-
merical methods that respect the continuous system in seleeant aspects. For
this goal, the very simple, two-dimensional framework isfeetly appropriate.

The omissions in the discussion are sometimes glaring.@&mple, the impor-
tance of accurately simulating transport phenomena in mhyeed cores is largely
omitted [check cross reference]. The notable exceptidmeisietailed discussion on
the relationship between fluid acceleration and absoluticity transport. The next
glaring omission is the lack of discussion of potential igity and its relationship
to the velocity field; the discussion is based on an analysieeoabsolute vortic-
ity field. While absolute vorticity is connected only to thelacity field, potential
vorticity is connected to both the velocity field and to thesséield. The analy-
sis below can (and has) been extended from absolute vgitiicfiotential vorticity
(Ringler et al, 2010). The choice was made based on the lileéieh firm grasp of
the absolute vorticity dynamics is a prerequisite to un@deding the potential vor-
ticity dynamics. And finally, while the primary target geamyeof dynamical core
is the surface of the sphere, thplaneapproximation is made through out. All of
the analysis carries over to the sphere, the simplificatioth¢ f-planeis for the
sake of conciseness in presentation. And finally, while doai$ is on the relation-
ship between the evolution of velocity and its relationgbigorticity dynamics, we
need to be sure to understand that the velocity equationriigeddromF = ma and
that the system can not be closed without the knowledge afehsity field and the
constitutive equation relating density to pressure.

The discussion unfolds in the following manner. First, tle&evant evolution
equations are constructed from the Lagrangian perspeciivese conservation
statements are then transferred to an Eulerian referemoefthrough the use of the
Reynolds Transport Theorem (RTT). Since a full discussidRTr is rarely found
in texts related to geophysical fluid dynamics, RTT is deatifrem first principles
for completeness. Following the development of the evolugiquations appropriate
for an Eulerian reference frame, a qualitative analysioisdacted of the various
"flavors” of the momentum equation that can be used as the fasa numerical
solution. The discussion then moves into the setting ofrdtsmumerics by asking
the most basic question of "How we begin the process of dst@n?” And fi-
nally, a numerical model is developed that meets the caitgeveloped throughout
the entire discussion. The numerical model is constructedich a way that it can
easily be implemented in development environments suchA MB.

2 Reference Frames and Conceptual Constructs

When we consider the climate of the atmosphere or ocean, penebconsiderable
effort on the phenomena of transport, such as the transpdicio density from

one region to another, or the transport of tracer substanoe & source region to
a sink region, or the transport of momentum from one area tahan. In almost
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all cases, the most natural setting to consider transptreisagrangianreference
frame where we, as the observer, move with the fluid.

To start, let us define a volume of fluil, composed of a set of particleR,
enclosed at all times by a surfacg,Each particle in the set d® is denoted by
its vector positionX(t) = Xie; + Xoe + Xse3. As indicated X is only a function
of time. Also, e; 23 is the set of orthogonal unit vectors spanning Eespace.
See Figure 1. The idea of constructing the volume as a setrti€lpa is entirely
a conceptual construct; the particles are simply the mosicBalement” that is
used to define all other features; lines, surfaces and vawae be "built” from
sets of particles. Each particle is accompanied by an aribjtdong list of labels
representing such things as the particle positd)) flensity ) and velocity ().
The validity of such an approach is that the particles can a&denarbitrarily small
and, thus, approach the continuum limit.

€9

Fig. 1: The Lagrangian perspective. thine= 0 a volume of fluid\p, is identified. The volume
is composed of a set of particleR, with each particle identified by its vector positidh Even
though the volume is sheared, rotated and dilated as it ntbvesgh space, it is always composed
of the same set of particlés. Thus, the boundary surroundilgis impermeable. The Jacobiah,

integrates the time-rate-of-changevbéind represents the fractional change in the volume between

time= 0 andtime=t. The volume of fluid at any timeis equal to its volume at some initial time,
Vo, times the fractional change in volume,Since the boundary &f is impermeable, the mass,
M, withinV is a constant in time.
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The amount of mas$4, or tracer substanc@, within the boundary surface can
be expressed as

M= [ p(x,t)dV (2)
A

Q= [ pixvarxtav @

v(t)

where the limits of integration span the voluwi&). The dependence &f on time
is retained to make clear that the limits of integration,@megral, change in time.
is the fluid density with units ofmasspervolumeandq has units of concentration,
such asg of Q perkg of fluid.

Assume that no mass or tracer substance is exchanged aoeobsundarys
such that

dMm
and do

Equation (3) and (4) define the material derivative as meaisur the Lagrangian
reference frame of motion by stating that the amoumM@ndQ is invariant in time
when following a volumé/(t) that is always composed of the same set of particles
included inR.

Another reference frame of great utility is tl®ilerian reference frame where
the observer remains at a fixed position in space, as opposaaying in space
along particle trajectories. The material derivative &y, Q) is expressed in the
Eulerian reference frame as

dQ DQ 0Q
—= =—=—+u-0Q (5)
dt |fiuidpartice Dt Ot

where, as shown in Figure @,is the particle velocity defined as

dXx

The gradient in (5) is define as

9Q 9Q 9Q
0Q= T 962 9™ (7)
Both terms on the right-hand side (RHS) of (5) are evaluatexfaxed time and
at a fixed point. Even when the material derivative is ideilyczero, a non-zero
time-rate of change‘%, can be observed at a fixed location due to the differential
transportu -00{}, into and out-of a specific region. An Eulerian observer eisaky
balance%—“{' = 0 by measuring the differential transport at one locatibantsetting
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the local time tendency to the value required to make the mahtkerivative sum to
zero.

The blending of the Lagrangian and Eulerian reference featimeugh the use
of Arbitrary Lagrangian Eulerian (ALE) (Hirt et al, 1997) theds is increasingly
popular in climate system modeling. While the full discossof ALE methods is
beyond the scope of this chapter, the analysis of the comtimaystem given in the
following section can be extended to ALE frameworks.

3 Evolution Equations from a Lagrangian Perspective

The elegance and simplicity of the Lagragrian referencenérés clearly apparent
in the equations (1) to (4). In a model of the global atmosplerocean we could
envision decomposing the domain into a set of Lagrangiaimek where each vol-
ume is separated by an invisible, yetimpermeable, bafiernumerical algorithms
would then track the "blobs” as they move through space bpushed, squeezed
and rotated due to their contact with neighboring blobs.uchsa model the phe-
nomena of transport would be remarkably well simulated; rassror tracer sub-
stance would be erroneously exchanged between the Lagraagiumes. In fact,
ideas along these lines are under development by Haertg&G9) and Dixon and
Ringler (2010, submitted).

The primary reason that no robust climate models are caistiientirely in a
Lagrangian reference frame is due to the rapid deformafidineoLagrangian con-
trol volumes. As seen in Figure 1, while the mass within thieim®@V is constant
in time, the volume itself can evolve in time through rotatidilation and shear-
ing. Figure 2 demonstrates what happens to control volumggpical geophysical
flows. Initially compact control volumes are stretched dusttearing. The stretch-
ing creates long filaments that are folded. Tracking thegelkadistorting control
volumes poses a tremendous challenge for numerical madelin

So while the Lagrangrian reference frame proves exceghounaeful for the
construction of the evolution equations, numerical modsdscurrently restricted to
reference frames that are essentially Eulerian. As a regailitequire a robust means
of transforming conservation laws and evolution equatlmetsveen the Lagrangian
and Eulerian frames of motion. While several methodologiesvailable for trans-
forming between these reference frames, an approach basee Beynold’s Trans-
port Theorem (RTT) is particularly appealing for two reasdfirst, the RTT is for-
mulated in an integral form that leads naturally to equatmuitable to finite-volume
models that will be discussed in Section 5 and 6. Second,ergkzation of the RTT
allows for the seamless transformation between the Lagaamgference frame and
any other reference frame that falls between the Lagragivifig) and Eulerian
(fixed) reference frame. Thus, the emerging type of modedsdban ALE methods
are fully accommodated in approaches based on the RTT; tlister serves as a
useful waypoint on the path to developing numerical modethé ALE reference
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Fig. 2: In the highly nonlinear flows that characterize fluidtion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due thes@nce of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volasimakes the formulation of numerical
models within the Lagrangian reference frame an extremiffigudt challenge.

frame. A full analysis of RTT and its generalizations can benfd in F. White's
Fluid Mechanics textbook (White, 2008).

3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Exampleg-oincludep with units of
mass per unit volumegq with units of tracer mass per unit volume@u with units
of momentum per unit volume. The conservation statemerf fiorthe Lagrangian
reference frame is expressed as

d
" V/F(x,t)dv —0. ®)
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Note that (3) is included as a specific example of(8).

The subscript "L” on the volum& in (8) has been added to denote that the
volume is being viewed by an observer moving in the Lagramggderence frame.
The goalis to move the time derivative inside the volumegrdéand, thereby, allow
for the integration to occur over the same voluvhbut with respect to an observer
in a different reference frame. This is somewhat problemsitice the limits of
integration)/, are a function of time.

The way around this difficulty is to make use of the fact that vblumeV, is
composed of the same set of partidiest every instant in time. Thus, as shown in
Figure 1, the differential volume elemedi¥ at some timé is related to its value at
timet=0as

dVv =Jdw 9)

whereJ accounts for the fractional change in the volume elementden time O
and timet. Conceptually we can consider each of these differential flements
d\; as being associated with a single particle. Thus, (8) cardnsformed to

d|r d|r
" \/F(x,t)dv - V/F(x,t)Jdvo —0. (10)
L 0

Note that both sides of (10) integrate over the same grouudicpesR, but do so
in different ways. The LHS indirectly sums over the partsdby integrating ovev, ,
which is identical to spatial extent spannedt timet. The RHS explicitly sums
over the particle position% at timet included inV_ and weights each particle by its
initial volume, Vg, times the fraction change W betweertime= 0 andtime=t.
Now that the limits of integration on the RHS are not a functid time, the order
of integration and differentiation can be exchanged. Itipalar, we can write

d r T D D
a\/F(XJ)JdVo:V/ [JEF(XJHF(XJ)&J db=0. (11)
0 0

Just asl accounts for the time-integrated factional change in the sf the volume
elements% accounts for the instantaneous rate-of-change in the fthe @olume
elements, namely

DJ

— =J0O-u. 12

Dt u 12)
Equation (12) states that the rate-of-change of a Lagrangiame ( \p) is equal to
its present volumel(\p) times the divergence of the fluid; singgis not a function

of time it cancels in (11). Using (12) we can simplify (11) to

/{%F(X,tH—F(X,t)D-u dVo = 0. (13)
Vo

1 1n general the RHS of (8) need not be zero. A source terrf foan be placed on the RHS of (8).
The proper evaluation of this source term is along the voltrajectory.
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We can expand the first term in (13) using the definition of tlzerial derivative
(5) and combine terms to obtain

/[%'H:D'U}dVO—/[%:*'D'(FU)}dVO_O, (14)

0 0

The broad utility and analytic power of (14) is in the choideéVp. Note that the
only requirements ol are the followingVy is coincident withv| at some instant
in time andVy is fixed in space. Of particular interest is whénandVy span the
same volume of spaeé the instantime= 0. At this instant in time, we can see that
\/p is the Eulerian representation \@f, in that it spans the same volume but is not
moving with the fluid. The volumeg, andV_ only differ in the reference frame of
the observer, with the former in the Eulerian reference &amd the latter in the
Lagrangian reference frame. RelabelMgasVe to emphasis this poifit we can
now write

oF

d
d V/F(x,t)dv _V/{Emmpu)]dv_v/{%wuu]dv—o (15)

Equation (15) is the Reynolds Transport Theorem (R¥The only way to satisfy
(15) for any\Vg is to guarantee that

JoF
E‘FD-(FU)—O. (16)
A more useful form of (15) is obtained by applying the diverge theorem to the
O (Fu) term to yield

at

% /F(x,t)dv :/aFdV+/F u-ndS=0 (17)
\ VE S

where is the surface bounding: andn is the unit vector normal t& directed
outward. The RTT states that the time-rate-of-change ofiai@nsive quantity-
inside a volumé&/_ following the fluid motion can be computed at any instantrineti

as the sum of the time-rate-of-changeFofnside Vg and the net flux of across

the surface bounding:. See Figure 3. The RTT allows for conservation statements

2 The Eulerian voluméyg, is often referred to as a “control volume” when discussetiéncontext
of finite-volume methods

3 The term "Reynolds Transport Theorem” is most commonly wgken the volumay/, is trans-
ported with the fluid, as is the case for the first term in (15hew the volume is not being ob-
served in the Lagrangian reference frame, a generalizafi@T T still holds and that theorem is
commonly referred to as the "Generalized Transport Thedrem
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to be naturally cast in a integral fofiras shown in (17). With the machinery of
the RTT in place, we can easily apply it to any conservatiatestent to obtain an
analytic expression of the dynamical core expressed igiatéorm.

pall AN

\Lé
VL(t)
Ve
u
ﬂw
% |:/F(a:,t)dV} = %—de+/Fu~ndS:0
\%3 Vi Se

L L
Time-rate-of-change Rate at which Fis
of F within the Eulerian removed from the
control volume. Eulerian control volume.

Fig. 3: Anillustration of the Reynolds Transport Theoremhséme time = 0, the volumé/, is co-
incident with the volum&E. The Eulerian volum®g remains fixed in place while the Lagrangian
volumeV, deforms tov, (t) at timet. The conservation statement fris that the integral oFdV
over\_ is constant for all time. The Reynolds Transport Theorermowvad|for the computation of
the time-rate-of-change fd¥ within Ve by computing the flux of that is transported acrosg
over timet.

3.2 Conservation of Mass and Tracer Substance

Applying (17) to the conservation of mass and tracer exjpyassn (3) and (4), we
obtain

4 Theintegral formis also referred to as theeak formsince, in general, the statements hold only
for a compact region of integration.
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gt {/ dV] /apdv+/pu ndS—o0, (18)

\3

d|r _ [9(pa)
o ['/pqu] _'/ . dV+/pqu ndS=0. (19)
Vi Ve

Equations (18) and (19) are inextricably coupled and a dision of the coupling
is worthy of its own chapter. A glimpse at this entanglememt be seen by simply
definingGy, = pu-n and rewriting (18) and (19) as

d ap B
" [/pdV] /Edv+/GmdS_ 0, (20)
\ Ve S
%[/pqdvl / (apq dv+/q6mds 0. 1)
Vi Ve

Gm is the mass flux per unit area acr&s Equation (21) shows that a prerequisite
to computing the tracer flux acroSg is the knowledge of the mass fl@,. In fact,
when written in this manner it is clear that tracer transjgarteaningless without the
underlying mass transport fietdl,. Those transport algorithms that fully recognize
the relationship between mass and tracer transport areappsbpriate for use in
climate simulations.

Differential forms of mass and tracer transport can be abthdirectly from (16)
or by lettingVe — 0 in (18) and (19) to obtain

9p

EJrD (pu)=0 (22)
e 9(pq)
5+ 0 (pqu)=0. (23)
Equations (22) and (23) can be written in material derieaform as
% +p0-u=0 (24)
and Dy ., o5
Dt

The last two forms will be used in the discussion below.
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3.3 A Statement of Newton’s Second Law

In order to complete the Lagrangian perspective illustrateFigure 1, we need to
describe how the volume evolves in time, i.e. what determihe set of particle
velocitiesu that will dilate, rotate and shear the voluivie shown in Figure 1? In
this case the intensive quantity is momentum per unit volume

P=pu. (26)

In its most basic form, the statement of Newton’s Second lsaw i

—t " /P t)dv /deV+/Fst 27)
VL

whereFy is abody forceacting throughout the volumé andFs is asurface force
acting on the surfacg_. F, has units of force per unit volume afd has units of
force per unit area. Applying RTT as expressed in (13) to y25ljis

V{[%(puﬂ—(pu)lu]dV_V{deV+S{FSdS 28)

Expanding the material derivative and combining termsltegu

/{p%w(t’p +p00. u)]dv /deV+/Fst (29)
Ve

The term(% +p0d- u) is a statement of conservation shown in (24) and is iden-

tically zero. The momentum equation now has a form that isogioais toma = F
with

/p—dV /deV+/Fst (30)
Ve

where2U B is exactly equal to the particle acceleration. The spedifices that are
applied to the RHS can range from the Coriolis fortmethe pressure gradient force
to surface drag to shear stress, just to name a few. The fareswill be on the
forces responsible for geostrophic balance: Coriolis amdgure. In addition, the
Coriolis force is representative of a body force with thegration oveWg, and the
pressure force is representative of a surface force witintiegration oveiS:. The
Coriolis force can be expressed as

5 The Coriolis force is arapparentforce that arises due to casting the equations of motion in
a non-inertial, rotating reference frame. Both the Lagramgnd Eulerian reference frames are
measured relative to the underlying rotating referenceaéraf the system of equations were cast
in an inertial reference frame, then the Coriolis "force”wibnot be present.
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FpdV = — [ fok x (pu) dV (31)
[Foav -/

wheref, is the Coriolis parameter that is assumed to be a constanafiplaneap-
proximation has been assumed) &rid the unit vector pointing in the local vertical
direction. The pressure force can be expressed as

/Fst: —/pn dS:—/DpdV (32)
S S VE

wheren is the outward directed normal vector $8. The negative sign on then

termin (32) is because, by definition, pressure "pushesamiveonSt resulting in a

force directed in the- n direction. Equation (32) also uses the divergence theorem

to transform the pressure force from an integral &eto an integral oveYg.
LettingVe — 0 allows (30) to be expressed in its differential form as

%:—fokxu—%ﬂp. (33)
One numerical method that will be of particular interestobeis the “finite-
volume approach.” In this approach, we retain prognostiméqgns formean values
over discrete regions. As a result, the weak or integral fofr(83) is more amenable
to a finite-volume approach. In order manipulate the monmargguation shown in
(33) into weak form, we can apply (17) to the intensive qugmi= p u to obtain

/a(gtu)dV—i—/(pu) u-ndS— /dev+ /Fst (34)
\'/E S \'/E SE

With examples of, andFs in place, the integral form of the momentum equation
becomes

'/'6(gtu)dV+S{(Pu) u-ndS— —v/' fok x (pU) dV—S{pndS (35)

VE

Figure 4 illustrates the various terms involved in (35) o&llngVe — 0 in (35) and
transforming the 2nd and 4th term using the divergence #@megives

d(pu)
ot
We have developed several different analytic form$ef ma in this section.
In particular, a particle-based formulation of momentunshi®wn in (33) and a
control-volume formulation is shown in (35). When constitig a numerical model,
each form will have its own advantages and disadvantagesvilVeeturn to this
discussion in Section 4.

+0-(puu)=—fokx (pu)—0-p. (36)
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—Pn

7/pndS:0

Sk

ou

Fig. 4: A control volume perspective of conservation of matnen: The time-rate-of-change of
momentumpu, within Ve is due to three mechanisms. The first is the apparent bodg, ferfigk x

u, acting over the entire control volunve. The second is due to the pressure force acting along the
boundary ofVe. And the last mechanism is the transport of momentom,across the boundary

of V. Other mechanisms such as dissipation and external satanesso be included.

3.4 Dynamics of Vorticity

By usingF = ma to construct the evolution equation for velocity or momentu
we are describing how a particle (33) or a region of fluid (ZSponses to applied
forces. In addition to the balance-of-forces in the momenagquation, there are
kinematicconstraints on the structure of the velocity field. A vecteloeity field
can always be described as a sum of two vector velocity fielisr&vone vector
field is purely rotational and the other vector field is pumdilyergent. This is known
as the Helmoltz DecompositiénThe Helmoltz Decomposition states that we can
always decompose a vector field as

U=us+U; (37)

6 The simplification to singly-connected domains extendminfinity is made here for clarity in
presentation, see (Batchelor, 1967) page 85 for a full disiou.
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with
O-u=0-us =9, (38)

and
Oxu=0xu;={¢, (39)

whered is the scalar divergence field associated wind({ is the vector vorticity
field associated withu. Equations (38) and (39) show that the divergent compo-
nent ofu is contained entirely i 5 and the rotational component vfis contained
entirely inu;. Given a divergence and vorticity field, the velocity fieladhdze deter-
mined by first finding the potential fields consistent witland{ as

D2p=3, (40)
and
?B =1 (41)
and then differentiating the potential fields to obtain teéovities as
D(p =Us, (42)
and
OxB=u. (43)

Solving (40) and (41) for the potential fields requires theeision of thel? opera-
tor.” While the Helmoltz Decomposition holds for three-dimensiflows, we will
limit the velocity to 2-D planar flows in the following sectio

Broadly speaking, the rotational component of the velofiéid, u,, is associ-
ated with slow modes, such as Rossby waves, and the divergentonent of the
velocity field, us, is associated with fast modes, such as gravity waves. An ade
quate representation of both the rotational and divergemponents of motion is a
prerequisite to robust simulations of geophysical fluidatyics.

From a climate modeling perspective, avoiding the spurfousing of the rota-
tional component of the velocity field is of great concermc®ithe vorticity field
tends to evolve slowly in time via transport (i.e. it is a slavode), errors in the
evolution of the rotational component of velocity tend todowected along with the
fluid flow and, thus, accumulate in time. Discrete numericatlels with spurious
forcing of the vorticity field resort, inevitably, to inapgpriately large levels of dis-
sipation in order to control the spurious accumulation atiedgy variance at the
model grid-scale.

Throughout the remaining sections of this chapter a tremesdmount of dis-
cussion will focus how to design numerical methods thateppately solveF = ma
while avoiding any spurious forcing of the vorticity field @Mill begin this discus-
sion by developing conservation statements in the contissgstem regarding how

7 In singly-connected domains, like the entire surface ofifteere, no additional boundary condi-
tions are required to solve (40) and (41). In multi-connéatemains, additional boundary condi-
tions are required to close the system.
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the rotational component of the velocity fiedlouldevolve in time. Later sections
will focus on how to build these conservation statementsiiné discrete system.

3.4.1 Conservation of Circulation

Circulation measures the mean rotation around a materrgbao (see Figure 5).
Circulation is essentially the area-weighted repres@mtadf vorticity. In the dis-
cussion of circulation and vorticity, we will limit the vedity field to two spatial
directions, such as the surface of a plane. The reductioherspace spanned by
the velocity field means that volume integrals in RTT reduxsurface integrals
and surface integrals in RTT reduce to contour integrals.r&lative circulation is
defined as

r&fzqurz/kmxuynd&:/zwum (44)
c(t) S(t) S(t)
Wherel'cr(t) measures the mean rotation produced by the velocity fieddound a

c(t) that moves with the material particles. Herés the outward directed normal to
dS for the 2D system considered herés the local vertical, thug - n measures the
component of vorticity in the vertical direction. The limivf integration are around
the contourc(t), or over the are&(t) associated with the contour. The explicit de-
pendence on time has been retained(ir) and S(t) to emphasize that the limits
of integration are a function of time. All analysis in thiscien will take place in
the Lagrangian reference frame; the use of RTT to transfbencbnservation state-
ments to the more practical Eulerian reference frame wililtiee in the following
section.

The first task is to determine the appropriate conservatatesent for circula-
tion within a Lagrangian control area. Note that since thet@or of integration in
(44) moves with the fluid, the contour is composed of the saghefsparticles for
all time. Applying the time derivative to (44) yields

d _, d du
al'c(t) = a7{u-dr = ]{ [dr~a
c(t) c(t)

Since the elemerdr is transported with velocity, its time-rate-of-change can be
expressed as

+ud$”] (45)

particle

d(dr)
dt

The RHS of (46) measures the deformation and rotaticir afue to spatial varia-
tions in theu field 8 Using (46) in (45) yields

=dr-(Ou). (46)

8 Equation (46) is obtained by noting thgc%jt—r) = u(x+dr) — u(x), expandingu(x+dr) in a
Taylor series and retaining the first two terms.
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[uxdr]- fok

the rate at which planetary
vorticity is swept by the
transport of ¢(t) by u.

c(t) is the material loop
moving with the fluid.

dr is an infinitesimal
segment of c(t).

Fig. 5: A graphical representation of circulation.

d Du [ul Du
—rf:]f— oY -d:]f—.d 47
dt v [Dt+ (2)} ' bt (47)
c(t) c(t)
where (5) is used to recast the time derivativeucdis a material derivative. The
relationship between the evolution of circulation d&he ma is becoming apparent

with the appearance of tI%i in (47). If we substitute in the form of the momentum
equation defined in (33) we obtain

d _, Op
s _C(]f [—fokxu— ; } dr. (48)
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The first source of relative circulation on the RHS of (48)dkated to the amount
of planetary vorticity "captured” irt(t) due to expansion or contraction of the area
associated witle(t). Referring to Figure 5 we can manipulate this source term as

- 74 [fok x U] -dr = — f [uxdr]- fok = —fogsu) - —% (foSt)].  (49)
c(t) c(t)

The termu x dr represents the rate at which area is swept by the transpelgroent
dr by velocityu. When integrated around the entire contour and multipligthle
planetary vorticity, the result measures the time-ratekafinge in the amount of
planetary vorticity contained withia(t). If we define theplanetarycirculation as

Iy = To S (50)
then we can express tladsolutecirculation as
I_Cé(lt) - I_Cr(t) +I—cl()t) = / ((+fo)dS= / nds (51)
S(t) S(t)

wheren is the absolute vorticity defined as the sum of the relativéicity and the
planetary vorticity. We can now rewrite (48) as

d O
ST = ]( [_Fp} dr (52)
c(t)

where (52) is an expression for the rate-of-change of abesaluculation associ-
ated with a contouc(t) that is observed in the Lagrangian reference frame. The
remaining source term on the RHS of (52) is the due to thereéiffiial acceleration
of particles along(t) produced by the pressure gradient force when variations in
the density field are present. The primary interest here ihermituation when the
density field is constafti.e. p = po. In this situation we find

Op -1
- -dr:—]{D -dr=0. 53
7{[ Po} Po : (3)
c(t) c(t)

The termp- dr measures the gradient of the pressure field in the direcfiadin.o
So long as thee(t) loop traced out by the differentiar elements is closed, the
integration ofdp- dr aroundc(t) is guaranteed to be identically zero. This results
holds for any loop and for any scalar field. With the resultted in (53), we can
end the analysis with

9 When variations in density are present, as in the real athessand ocean, then the RHS of (52)
serves as a source of vorticity. When considering the nalesimulation of this process, a critical
prerequisite is the guarantee that vorticity@t created when these variations ax present.
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d d|
= '/r]dS —0 (54)
st)

that states that the absolute circulation contained witiointourc(t) as it moves
with the fluid will be a constant in time; absolute circulatiwithin c(t) is conserved

in time. The relationship also makes clear that, in genénalabsolute vorticitys
not constant within the contows(t). Only in the special case of non-diverengent
flow resulting in2- [S(t)] = O will the mean value ofy be a constant within contour

c(t).

3.4.2 Conservation of Absolute Vorticity

The entire analysis in the section above is conducted in #grdngian reference
frame. The purpose of this section is to use RTT to transkctnservation state-
ments into an Eulerian reference frame. Comparing (54))tst{Bws that the form
of conservation of absolute circulation shown in (54) isahie for the application
of RTT. Applying RTT as stated (15) to (54), we find

d o d B an B
=g /)ndS _!{EJFD.(n u)]dS_ 0. (55)
St

The form of (55) that is most suitable to finite-volume apgiions discussed below
is

/‘;—'st+7§';7 u-ndr=0 (56)
5 .

that states that the time-tendency of absolute vorticitsegionSis equal and op-
posite to the rate at which absolute vorticity is being tpamged out of regiors.
A primary goal in the construction of the numerical modeleleped below is to
guarantee that the velocity field evolves in such a way as micr(56) exactly.

For the sake of completeness we note that in the limit®f 0 and allowingp
to be nonuniform, (55) becomes

an Up

E_FD.(QU):—DX{?} (57)

where the RHS source term shown in (52) has been retainedfidadly, introduc-
ing the material derivative into (58) yields

Dn L @
Dt+nD u= Dx[p} (58)
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3.5 Summary of Evolution Equations

The analytic analysis of the continuous system is now cotepléhe approach has
been to identify conservation statements in the Lagrangiarence frame and to
use the Reynolds Transport Theorem to transfer these c@tigar statements into
an Eulerian reference frame. The value of the Reynolds p@h3heorem is that
it provides a machine-like approach to the derivation ofl@on equations spec-
ified naturally in the integral form conducive to the devetamt of finite-volume
methods.

Before turning to the process of discretization, a surveypisducted of the var-
ious flavors ofF = ma that can be used as the basis, or starting point, for the dis-
cretization process. The specific formFof= mathat is chosen as the starting point
for the numerical model has a tremendous impact on the atibstof that numerical
model. Particular attention is paid to the ability of eacimfdo satisfy bottF = ma
and conservation of absolute vorticity (56).

4 The Various Flavors of F= ma

In the continuous system, all forms of the momentum equaiienequivalent?
Since each form can be manipulated into any other form, tisare difference be-
tween the various expressionsff= ma. This is not true in the setting of discrete
numerics. Discretizing the continuous system implies fig@ximation of the con-
tinuous fields as a finite set of values that typically existamesh that spans the
spatial extent of the system. In addition, the continuoweafors such as, (- and
Ox are replaced with discrete approximations. One result sdrdtizing the mo-
mentum equation is that the various forms are no longer atpnv, we can not, in
general, manipulate one discrete form of the momentum &gquiito another dis-
crete form using the discrete operators. As a result, whecheese the form of the
momentum equation used in a numerical model, we are sayimgead deal about
what aspects df = ma are most important in the target application. Each form has
its own advantages and disadvantages and, thus, each ferits lsavn niche to fill
in the modeling of the global atmosphere and ocean systehis s@ction provides
a brief review of the commonly used flavors Bf= ma with a discussion of their
respective advantages and disadvantages.

4.1 The Advective Form

The advective form of the momentum equation (33) is restagee for convienence:

10 The equivalence holds for smooth flows. If singularitiesalepment in the solution, the equiv-
alence between the various forms is more tenuous.
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%:—fokxu—%ﬂp. (59)
This is essentially an evolution equation for one of theiplad in the Lagrangian
system, such as partickeshown in Figure 1. Assume that the system is discretized
on a regular mesh composed of squares, such as the one shéiguie 6. If at
some time, say = t, one particle is placed at the center of each square shown in
Figure 6, then the particle position and velocity at somerléitne, sayt = te, is
determined by integrating (58)ong the particle trajectoras

Lagragrian trajectory: Backward-in-Time Lagragrian trajectory: Forward-in-Time
u particles begin on a regular mesh
X(tp) " %
integrate forward in time.
Y BX
. . dt
integrate backward in time.
X(t.)
particles arrive on a regular mesh u
X(te)
t t
X(ty) = X(t.) — /u dt X(t,) = X(ts) + /u dt
. te J t.
ty 1 ty 1
u(te, X(te)) = u(te, X(1)) +/ |:7fok x uf;V -p| dt u(te, X(te)) = u(ty, X(t)) + / {7fok x U*;V pldt

ty 1
L ] L | L 1 J

Determine by Integrate along Known as an Integrate along

interpolating velocity trajectory. initial condition. trajectory.
on regular mesh

toX(t;) positions.

Fig. 6: A graphical representation of forward Lagrangiad backward Lagrangian (i.e. the semi-
Lagrangian) method.

te

te
% = U(te, X(te)) — U(tn, X (tn)) = / {_ fok x U—ED' p| dt. (60)
t ty P
Assuming that the particle positions and velocities arevkmatty, the system is
solved forX (te) andu(X(te),te) as
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te
X (te) = X(tp) + / udt, (61)
)
te 1
U(te, X(te)) = U(ty, X (tp)) +t{ [— fok x u—ED- p} dt. (62)

It needs to be emphasized that all of the source-term irfiegrathe RHS of (62)
are along the particle path starting at titg@t positionX(t,) and ending at timé&
at positionX(te). While there are certainly challenges with the discretduatan
of the RHS of (62), a more basic problem with the approach as tie particle
positions at the end of the time step are, in general, no lboge regular mesh
(see Figure 6). More forward-in-time steps will lead to a tomnal distortion of
particle positions due to the same shearing, stretchinglafmation mechanisms
illustrated in Figure 2. In order to prevent this continuiatartion, (60) is generally
evaluatedbackward in timein what is commonly known as thgemi-Lagrangian
approach(see Staniforth and Cote (1991) for a complete review).

Instead of assuming that the particles exist on a regulahmgthe beginning of
the time step, the particles are assumed to reside on thiaregash at the end of
the time step. In this situation, the particle positiof{$:) are required to form the
regular mesh shown in Figure 6. The challenge is then to mhéterX (t,) by inte-
grating particle trajectories backward in time, i.e. toedetine the starting point of
the particles such that the particles "arrive” on a regulasimate. In this approach
the system is solved fof (t,) andu(X(te),te) as

te
X (to) = X (te) — / udt, (63)

t
te. 1
U(te, X (te)) = U(tn, X (to)) +t! [—fok <=0 p} dt. (64)

In generalu(ty, X(tp)) is determined by interpolating the velocity values known on
the fixed mesh at timg to X(tp) locations. Equation (63) and (64) are coupled and
need to be solved jointly or iteratively. The challengeswaeating the RHS along
the particle trajectory still remain.

The advantage of this approach is that exceptionally lomg tteps are possi-
ble 1! Since the integration is occurring along the particle cbianstic, traditional
advective CFL time step constraints do not apply. An add#@l@advantage is the
ease with which tracer constituents can be updated. Usigafd integrating%i1
fromt, tote, we have

11 while longer time steps reduce the computational expensegdfen simulation, longer time
steps also often lead to less accurate results. Weighinglhigve value of "fast” versus "correct”
is important in choosing the time step for a simulation.



Momentum, vorticity and transport 23

q(te, X(te)) = d(to, X (tb))- (65)

q(tp, X(tp)) is determined by interpolating the tracer values from thgpil@ mesh
to the departure poind$(t,). Once this interpolation is complete, the updated tracer
values are known immediately singés conserved along particle trajectories.

The disadvantages in this approach to solving the momentyration are re-
lated to the lack of conservation of mass and tracer substand the spurious
generation of vorticity. While these disadvantages pogerseproblems in the con-
text of long-time simulations typical in climate appliaats, these disadvantages
have been successfully mitigated and/or circumvented donarical weather pre-
diction applications where the integration time scalescaréhe order of days to a
week or two. Another alternative is to abandon the part@etric approach of pure
semi-Lagrange schemes and move to a cell-based approhebk[cross reference
Peter’s chapter]

The issues regarding conservation can be readily identiyedomparing (65)
to (4). The conservation statement is that the mass-weaightegral ofq (i.e. Q)
is conserved in time when no sources or sinks are presen{63gtonly "sees”
the tracer concentratiapfor an isolated number of particles and, furthermore, that
concentration is computed at locatiodéy,) via an interpolation procedure where
accuracy is generally much more important than consenvatio

The issues regarding spurious vorticity generation arekgproblematic in the
context of climate system modeling. In general, getting adf@on the evolution
of vorticity in a particle formulation is extremely difficulUsing (58) we could cer-
tainly "tag” each particle with an associated vorticityt lhe evolution of absolute
vorticity during the time step involves spatial gradieihiattare difficult to compute.
In addition, the same issue regarding lack of conservatimois in the context of
vorticity as occurs in the context of tracer transport. Amalfiiy, even if one could
manage to evolve vorticity with the particles in a realistianner, it is not clear how
that information could be used to control the evolution af frognostic velocity
field shown in (64).

4.2 The Flux Form

The flux form of the momentum equation is shown in (34), ilattd in Figure 4
and rewritten here for 2D planar flow as

3 a u 3 . 3

/ (gt )dS+/(pu)u-ndc:—/ fokx(pu)dS—/pn dc  (66)
S ce S ce

The main advantage of the flux-form momentum equation isitistelatively easy

to insure that the transport of momentum (the 2nd term in)(B6¢onservative,

i.e. momentum that exits one cells acrogsenters a neighbor cell. This same con-

servation property occurs in the evaluation of the prestnee; along a contour
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ce the pressure force results in an equal and opposite sourcementum for the
surfaces that shaig-. An additional advantage of the flux-form is that density is
incorporated into the prognostic variable. When using tiwe-form of momentum,
the prognostic variable jgu, whereas all the other forms haueas the prognostic
variable. The merit in retainingu as the prognostic variable is that @as— 0 the
prognostic variable goes to zero so longiaemains bounded. In the emerging class
of atmosphere and ocean modglss often related to the vertical layer thickness,
sop — 0is equivalent to a layer collapsing to zero thickness witlesf the mass in

a given layer at a given position is evacuated (e.g. KonorAma#tawa (1997) and
Bleck and Smith (1990)). This is a common occurrence in nicaemodels and
the flux-form momentum equation provides ample opportesito insure that the
discrete system remains well-behaved even in the the presdrimassless” layers.

The primary disadvantage in the use of the flux-form momergguation is that
the curl of (66) does not lead directly to a vorticity equatigorticity and circulation
are purely kinematic quantities that are related tdtheu notd x (pu). As aresult,
discrete models based on the flux-form of the momentum emudt not conserve
vorticity. In a discrete formulation of (66) every term hag fpotential to generate
spurious vorticity. If no guarantees can be provided in rég#o the conservation
of circulation or vorticity, in general the only recoursetisincrease the level of
dissipation to maintain a regular, well-behaved solutlbthe level of dissipation
required to suppress the spurious generation of vortisigignificantly higher than
is physically warranted, one should expect the numericalikition to be degraded
due to the physically-excessive dissipation.

The spurious generation of vorticity is due to errors in tieeiktization of the
system. Assuming smooth flows, these errors approach zére asder-of-accuracy
of the discrete operators is increased and/or as the gidutes is increased. The
possibility certainly exists that these spurious erroesaceptably small, even for
climate simulations, when employing high-order numerioathods and/or high-
resolution meshes.

4.3 The Vector-Invariant Form
The vector-invariantform is derived from the advectivenfiqdb9) where the material
derivative is expanded into time tendency and transpartgersing (5) to obtain

Ju 1
E—i—(u-D)u——fokxu—ED-p. (67)

If the (u-0O)u term is replaced based on the following vector identity

(u-D)u_(Dxu)xu+D[%|u|], (68)

we obtain
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oJu
ot

where{ =k (O x u), n = { + fo and the kinetic energy is definedlés= 1 |ul.

Since the vector-invariant form of the evolution of momentuas no notion of a
material derivative, it is a natural expression of the vityaendency at dixed point
in space The interesting and powerful aspect of (69) is that whils defined at a
point, the integral ofi around a closed contour defines an area, a circulation and the
area-mean vorticity. This relationship will be fully degpkd in Section 5.

The nk x u term will be referred to as theonlinear Coriolis forcebecause it
contains both the linear tendency tefgk x u and a portion of the nonlinear trans-
port term in the form of k x u.

When considering the momentum equation we are primarigrésted in the
velocity field that is needed for the evolution of the mass @mader fields. Beyond
the velocity itself, we are interested in thréerivedquantities: divergence, vorticity
and kinetic energy. Two of these three derived quantitigeeapexplicitly in (69).
The appearance of vorticity and kinetic energy does notssacéy imply that the
necessary controls are available to insure that theseitjgamémain well-behaved
and bounded, but it is a step in the right direction.

In the context of climate modeling, it is difficult to find stitoomings in choos-
ing the vector-invariant form of the momentum equation a&sltasis for a discrete
model. This approach was successfully employed on hex&gdda (Sadourny and
Morel, 1969) and on latitude-longitude grids (Arakawa arainb, 1981) decades
ago. The primary reason to not choose this form of the momneeyuation is that
another form of the momentum equation, such as the advdotireor flux form,
is a more natural choice for the application of interest.

:—nkxu—DK—%Dp (69)

4.4 The Vorticity-Diverenge Form

Since a great deal of emphasis has been placed on the imp@daworticity in the
above discussion, it is reasonable to consagxehanginghe prediction of the vector
velocity for the prediction of the vorticity and divergenée discussed above, the
Helmoltz Decomposition guarantees that vorticity and djeace form a complete
description of the vector velocity field, so prognosiigand d is a theoretically-
sound approach (e.g. Heikes and Randall (1995), Ringldr(2080) and Thuburn
(1997)). In addition, retaining as a prognostic variable leads to a strong control
over its evolution.

We generate the evolution equations foand é by taking[Ox and - of the
momentum equation, respectively. As long as we are workiitlg the continuous
equations, we can start with any form of the momentum egoatia obtain the
same resulting vorticity and divergence equation. Stgniith the vector-invariant
form of the momentum equation expressed in (69) and applyieg - [1x and -
operators yields
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Ju 0¢ 1
k-Dxﬁ_E_Dx [—nkxu—DK—EDp}, (70)
and P 05 1
u
= _D[—nkxu—DK—EDp} (71)

Focusing on the vorticity equation, we can recover the Eanegxpression derived
in (57) written as

Op

‘9_’7+D.(nu):—mx{?}. (72)

ot

The first important aspect to note in (72) is that] x [-nk x u] =0 (n u). The
application of the curl operator to the nonlinear Coriobsce results in the diver-
gence of the absolute vorticity flux. The second importapeasto note in (72) is
that(d x 0OK = 0; the curl of the gradient is identically zero.

The divergence equation can be expressed as

%—l—D-(nul)_—DzK—D-[%Dp} (73)
whereut =k x u.

The primary advantage of using the vorticity-divergencetof the velocity evo-
lution equation is the ability to retain (72) as a prognostjcation. In the presence
of uniform density, the time-rate-of-chance of absolutgigiy is the divergence of
the absolute vorticity flux. The absolute vorticity flux camddmputed numerically
using advanced transport algorithms that can guarantée thél remain smooth
at the grid-scale without the introduction of excessiveigiation.

The primary disadvantage of this formulation can be seedOh&nd (41). After
each time step, two elliptic equations must be inverted deoto compute the ve-
locity field that will be required to to compute the tendenesnts in (72) and (73)
on the next time step. For simple domains, such as the glttalsphere, inverting
(40) and (41) is straightforward but relatively expensiveagards to computational
effort. In more complicated domains, inverting (40) and)(#lanalytically chal-
lenging and, at least to date, computationally prohibitive

5 The process of discretization

In this section the continuous equations developed aboNdevdiscretizedn or-
der to obtain a numerical model for the evolution of momentiitme process of
discretization truncates the infinite degrees of freedoah éine present in the con-
tinuous system to a finite number of degrees of freedom inra@¢roduce a
computationally-tractable algebraic problem suitabledwisting computer archi-
tectures. When the numerical methods are based on traalifioite-volume tech-
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nigues, such as those to be developed below, the spatiaitext¢he continuous
system is decomposed intells and the temporal extent of the continuous system
is decomposed inttime stepsThe discussion here will be limited to the spatial
discretization of the continuous system.

The possibilities for the specific form the discrete momentequation can
quickly become unwieldy. For example, the optimal way toatepose the sphere
into cells is still very much a research topic. Even if we fithie scope to decom-
positions that attempt to produce quasi-uniform mesheshioéces include, at a
minimum, the cubed-sphere [check reference Nair chap¥erhnoi tessellations
[check reference Ju chapter] and Delaunay triangulaticimsdk reference Ju chap-
ter]. Furthermore, once a mesh is chosen there are at leagtifigrent staggering
arrangements of the prognostic variables: A-grid, B-g@igyrid, D-grid, and E-grid
(reference Thurburn chapter). In addition, we can choosebtthe four viable fla-
vors of F = mato discretize. So three meshes times five grid-staggerimgstfour
momentum forms leads to sixty permutations. And this is teefee even consider
the specification of the numerical operators.

A "down-select” of the 60 permutations is required. Somé tlown-select can
be made based on the target application. Some of this dolentean be based on
the wealth of experience that has been gained over the kgtyfears. And finally,
some of this down-select can be made based on an intuitionhaf wmethod(s)
are likely to emerge as the preferred-alternative over éx¢ decade. Furthermore,
the selection method should not be made as da carte process; some choices
of grid staggering are clearly inappropriate for certaioichs in the form of the
momentum equation. Rather, the process is similartabie d’hotewhere choices
are made with the prior knowledge of the other choices andhtkation to produce
the best overall productas opposed to the best single course. The courses in this
chapter'sable d’hoteare discussed directly below.

5.1 Target application: Joint Climate-Weather Prediction

The traditional gap between atmosphere climate modelidgémospheric weather
prediction modeling is disappearing. Atmosphere climatelets have been used to
conduct global cloud resolving simulations (Tomita et 802). Weather prediction
models have been used to study regional climate change ¢letual, 2004). While
each model is finding application outside what has been s mission, these uses
are clearly "off-label applications” where, as expectdws guality of the results
vary. The criteria driving the choices in model specificafipe. the choice of mesh,
grid staggering and form of momentum) have traditionallgrbeery different in the
climate and weather modeling communities. Climate apptioa have emphasized
concepts related to mass, tracer and vorticity consemvatie well as long-time
stability of numerical simulations. Weather applicatitvase emphasized concepts
related to local accuracy and simulation throughput. Thérdy need is for aingle
atmosphere model to excel at both climate applications agativer applications.
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So the target application for this discussion is joint clieaaveather simulations.
As a result, the choices made below may differ from the clsomade if the target
application was solely climate simulation or solely weatmediction. And finally,
these same choices will be applicable to a unified ocean nibdels appropriate
for both global ocean simulations and regional eddy-resglsimulations.

5.2 Grid staggering: C-grid Staggering

The choice of the grid staggering is very much constrainethbytarget applica-
tion. Weather prediction models have often used a collocataggering of vari-
ables in order to apply semi-Lagrangian methods to the aisreform of the mo-
mentum equation (Ritchie et al, 1995). This is a computatigrefficient method
that is greatly appreciated in operational settings whamailation throughput is
often a driving factor in model specification. Other gridggiarings, such as the
B-grid (Zhang and Rancic, 2007) and C-grid staggering (Slack et al, 2008),
have been used with success in both weather and climate saddhel choice of the
C-grid staggering, when paired with the other choices,aldb allow for exact con-
servation of absolute vorticity. And more importantly, the C-grid staggering will
allow for the precise control of the evolution of vorticity iime through the use of
advanced flux-limiting transport algorithms. In addititime C-grid staggering ex-
cels in the simulation of divergent modes that dominate thed:zresolving scales
of motion (Randall, 1994). The principle difficulty with ti@grid staggering is that
while the normal component of velocity is retained as a postjo variable, the
tangential component of velocity is needed to compute thndimear Coriolis force
[check reference Thuburn chapter]. The robustness of noatechemes built with
a C-grid staggering is very much dependent on the methodfaséue reconstruc-
tion of the tangential velocity component.

5.3 Mesh: Locally-orthogonal meshes

One of the residual benefits of using the C-grid staggerinigaisit accommodates
a wide class of meshes. The critical aspect of the C-gridhstagg is that the edge
that separates two cells is orthogonal to the line segmemexiing the centers
of the two associated cells [check reference Ju chapted.ldtal orthogonality
leads to compact numerical operators that are approxiyn2tel-order accurate in
space (Ringler et al, 2010). The local orthogonality, Gtgtiaggering and vector-

12 while the target applications involve full 3D simulation§ the atmosphere and ocean, the
process of discretization is best elucidated in 2D. The 3fdesy is clearly more complicated and
is not a simple extension of the 2D system. Still, the conoéporticity dynamics and conservation

of (potential) vorticity are equally important in the fulD3system
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invariant form of momentum will lead to a strong connecti@vzeen acceleration
and vorticity transport.

5.4 Form of momentum equation: The Vector-Invariant Form

The use of the vector-invariant form of the momentum equatias a long and
successful track record in climate modeling dating backttieast (Arakawa and
Lamb, 1981). Weather applications have tended to use athisf such as the flux
form (e.g. Weather and Research Forecast (WRF) model (Skeaket al, 2008) in
order to conserve momentum and to obtain higher formal acywr the advective
form (e.g. European Center for Medium-Range Weather Fete (BCMWF) model
(Ritchie et al, 1995) in order to employ semi-Lagrangianhods.

The comparison of the vector-invariant form to the flux forfies an important
insight into conservation. Given all of the choices madeval{oe. climate-weather
applications, C-grid staggering, and locally-orthogamakshes), either the vector-
invariant form or the flux form is a viable choice. If one chesghe flux form
of the momentum equation, then the prognostic varigbie,will be conserved in
the numerical model. As derived below, if one chooses théoveavariant form of
the momentum equation, then absolute vorticity will be @rmed in the numerical
model. The choice between the vector-invariant form or timeftirm of momentum
comes down to the relative importance of conserving absafoiticity or conserv-
ing momentum in the target application. The choice herevskoe the former more
than the latter.

6 Building a Discrete Model

This section will develop the numerical model that uses ai@-%faggering of the
vector-invariant form of the momentum equation discretiar a locally-orthogonal
mesh. The analysis will focus on the relationship betweertithe-tendency of the
velocity field and the absolute vorticity flux.

6.1 Defining the Mesh and Location of Variables

For this discussion we will assume that the domain is deceeganto a set of
squares as shown in Figure 7. As seen in Figure 7, the scaletidn, @, is defined
at the center of each cell. The component of velocity in threatfion normal to
each edge will be integrated in time with a prognostic equit\orticity points
are defined at the corners of the scalar function cells anidbeibssociated with
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the mesh denoted by the dashed lines. The assumption ihthaidsh continues
indefinitely in all horizontal directions.
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Fig. 7: The mesh used in the construction of the discretesyst

The choice of squares as the cell shape is based on sevesahsead mesh
composed of squares is clearly locally-orthogonal, so gtsithe requirement listed
in Section 5. A mesh composed of squares is also the mostsiltieemesh; the
analysis presented here can be easily replicated in daweloipenvironments such
as MATLAB.

While the derivation will be completed for a mesh composestofares, conformally-
mapped cubed-sphere meshes, Voronoi tessellations ardii2gl triangulations
are all accommodated in the analy$js.e. the results found for the mesh com-
posed of squares will be applicable to these more practieahes. In an effort to
point the way toward extensions to meshes that are useddcetie the surface
of the sphere, an indexing nomenclature will be chosen ghappropriate for any
unstructured mesh.

13 Cubed-sphere grids produced by projections that resulni@ uniform distribution of nodes
at the at expense of orthogonality (e.g. gnomonic-progectébed-sphere meshes) are not accom-
modated in this analysis
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6.2 Continuous Prognostic Equation

We discretize the vector-invariant form of the momentumadigu as

ﬂ4—r7k><u:—D<:D (74)

where—0® = —[] (p—‘; +K) represents the gradient terms on the RHS of (69).

In the full 3D systemp will vary in space and, as a result, the RHS can not be
written as the gradient of a potential. Here, the analysem@egs that the density is a
constanip, in order to demonstrate that the largest contribution tdRR& of (69)
(i.e. thep, contribution) does not project onto the vorticity dynano€she system.
The system can be closed by the addition of an equation té&sgthe evolution of
fluid pressurep. For reasons discussed in the Section 1, we will limit thdyais
to the evolution of velocity.

Thek x u operation acts to rotate the vector velocity by 90 degre#sicounter
clockwise direction. If we define- =k x u as in (73) then (74) is expressed as

Jdu 1
S tnut=-0o. (75)

6.3 Discrete Prognostic Equation

At each cell edge the unit normal veciay is defined to point toward the right or
toward the top as appropriatéln addition, the tangential unit vector is defined as
er = k x ey. The discrete version of (75) is generated by takeng (75) at each
edge to yield

ONg

W—ﬁkfk:—(el\l'm‘p)k (76)

where, as shown in Figure Bl = ey - u represents the componentwfn the nor-
mal direction andf = —ey - u* represents the componentwfin the tangential
direction. All variables with hatg;- ), require further specification.

The first example of the simplicity afforded by the assumptiad a locally-
orthogonal mesh is found on the RHS of (76). The RHS of (76)ireg the de-
termination of the component @f® in the ey direction. Sincesy is parallel to the
vector connecting th@ points on either side of the edge, the specification of the
(en-O®), can be approximated (with 2nd-order accuracy) at velodiintk; as
simply (&, — @] /da,, (See Figure 8). Using this representation of the gradient
forcing, (76) at velocity poink; is rewritten as

14 The choice of the direction of the local normal vector is \styiarbitrary. The choice made here
is for the convenience of presentation.
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Fig. 8: The detailed description of the velocity and vottichesh.
0N ~ -
atl = r’lekl - [(DI4 - (Dll] /doKl (77)

wheredg, is the distance betweeh;, and @;,. While the various ways to specify
Mk, IS given in Section 7, at this poirf, can be constrained as

i:’kl: f(njlvnjz) (78)

The absolute vorticity used to compute the nonlinear Cisrfokce, AT, at velocity
points is only a function of the vorticities defined at the efithe edgée® In order
to complete the specification of (77) a definition fE'R{ is required. The algorithm
for computingTy, is also given in Section 7.

6.4 Discrete Derived Equation

The importance of discrete derived equations is frequemtiriooked. Attention
is more often focused on the analysis of the discrete prdgneguations since

15 Other approaches to specifyirigare possible and often preferable. See (Sadourny, 1975) and
(Ringler et al, 2010) for a more in depth discussion of thesjiods alternatives.
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these are the variables that are explicitly tracked in timeeality, an analysis of
the discrete derived equations generally provides impbmaights into the chosen
numerical method. The purpose of this section is to dematesthat the discrete
system can mimic the continuous system in terms of the vortitynamics. The

analysis carried out in Section 3.4.1 and Section 3.4.2geated here, but in the
setting of a discrete system. The primary property of theinaous system that the
discrete system needs to mimic is

d o, d ' _[]an B
S = / nds _/ {EJFD-(n u)]ds_ 0. (79)

St S

The absolute circulation following a contoeit) is conserved when the fluid den-
sity is constant (as is assumed here) and when no frictioneé$ are present. The
challenge is to demonstrate that absolute circulation msexved following a con-
tour c(t) even when the discrete system does not directly prognosgation or
vorticity. Stated another way, the goal is to demonstrate that thetévolf the dis-
crete velocity fieldN, is consistent with the kinematic constraints imposed 8Y.(7
Since the velocity evolution equation is written in an Eidemreference frame, the
analysis is most direct when the focus is on the third par?8j.(The integration of
dScan span a single cell or a collection of cells that are carthin a single loop.

The analysis begins by taking the discrete curl of the veldendency equation
around thej; vorticity cell shown in Figure 8. The discrete circulatiopesator is
shown in Figure 9. As seen in Figure 9 the discrete curl has tenms, one for
each edge of a vorticity cell. Using the labels shown in Fegirthe curl operator at
vorticity point j; can be expressed as

1
A%u dr ~ A 2 Z Ny, e -dri, (80)

whereAj, is the area of the vorticity celj;. The dot producey -dry, accounts

for whether or nolN,, ey points in the same or the opposite directiondag,. In
addition, |dry, | = dg, to account for the distance of each segment of the loop
around vorticity cellj;.

A discrete equation for the evolution of absolute vortiégyconstructed by ap-
plying the curl operator to each term in (77). In order to [e\a clear representa-
tion of the curl operations, we will focus on vorticity poipt. Beginning with the
discrete curl of the time tendency N, we find

E 'du (9Nkm _d¢;,  dnj,
AL ot AJ1 Z &l = 5 = 5t (81)

C

where the curl operator has been moved inside the time diggxand we have used
the fact that% = 0. Now moving to the gradient term on the RHS of (77) we find




34 Todd D. Ringler
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Fig. 9: A graphical description of the discrete curl operato

1y 1 [(P2—) (P3—P2) (P3—Ps) (Pa—P1)
AZ{DcD drNAj [7@@ do‘2+7dck3 dag Tdog dg, T dag
(82)

where the distance used in the gradient calculation andistende used in the curl
operator cancel on each term. After removing these offgetérms we find

%\zfmcp-dr ~ A_:: (B2 — @) 4 (D3 — Dy) + (Pg— P3) + (D1 — Py)].  (83)

Just as in the continuous system, the curl of the gradiemteistically zero. This
property in the discrete system insures that forces in thexitg tendency equation
of the formO®, where® is any scalar field defined at mass points, do not generate
spurious vorticity.
Moving to the final term, the nonlinear Coriolis force, we find
L inutarat S T -dr 84
A]{U ~-x D M The €N, - A (84)
C

i1 m=1

Expanding the summation yields
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o> (Afew), dng=—1 [+ (ATdg,, - (ATdo),, ~ (iTdo), + (ATdo),|.
(85)

Combining all of the curl operators to produce a discreteaiqn for the evolution

of absolute vorticity yields

an; 1 A A . . B
s +A_,-1 {+ (ATdg),, — (ATdg),, — (ATdQ),, + (anc)kJ =0. (86)

Comparing (86) to its continuous counterpart in (57), wethag the discrete vor-
ticity evolution equation is an analog to the continuougesyswhen

1 o o o o
0-(nu) ~ AL [+ (ATdg), — (ATdg),, — (ATdQ), + (anc)kJ . (87)
The RHS of (87) is an approximation to the weak form of the djeace operatdf®

It is critical to note that in this discrete systesmrticity is transported by the recon-
structed, tangential velocity fieldt is useful to recast (86) as an expression for the
circulation within cellj; by moving the area into the time derivative as

an;j 0,—ja o A A A
Aj, atl = —atl =— [+ (anc)kl — (anc)k2 — (ATdo), + (anc)kJ . (88)
I'J"i‘ represents the absolute circulation around the dualjgelThis result can be
generalized to an arbitrary contour by progressively agldéils. Equation (88) rep-
resents a contour containing thgvorticity cell. The discrete equation governing
the evolution of circulation for thg vorticity cell can be expressed as

or; . o o .
SE=- [— (ATdo), + (ATdo), + (ATdg), - (anc)kJ . (89)
The edge shared by vorticity celjs and j, is edgek;. The term(ﬁ'fdc) x, appears

in both (88) and (89), but with opposite signs. The evolutibabsolute circulation
formed by the contour containing vorticity cgll andj, is thus

W — [ (ATd9),, — (ATdo), + (ATde), + (AT do), + (Tdg),, - (ATag), ]

(90)
where the shared edge between vorticity cglland j, cancels. The edges that
remain all lie on the boundary of the contour and accounttferttansport of cir-
culation across the boundary of the region. The mean alesetuticity within the
contour can always be determined by dividing the absolutalztion by the area

16 The approximation is 2nd-order accurate assuming suitdtdizes forf) andT.
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enclosed in the contour. This analysis is sufficient to stiét the discrete sys-
tem conserves absolute circulation exactly. By extenglemdiscrete system con-
serves the area-mean absolute vorticity exactly. Both e$dlconservation state-
ments mimic the findings in the continuous system. What isesamat surprising is
that these conservation statements have been prtieout even having to specify
f or T. In that, the conservation statements hold for grgnd anyT. The two es-
sential ingredients required for these conservationstaimgs to hold in the discrete
system are the use of the vector-invariant form of the moomargquation and the
discrete analog of the x 0@ = 0 identity.

The final and most important conclusion of this section iftflewing: The time
tendency of velocity due to the nonlinear Coriolis fo(tfp‘f) is the per-unit-length
absolute vorticity transport in the direction normalgg@ This is key to providing
a direct handle on the vorticity dynamics of the discretaeysvia the discrete
momentum equation.

7 Constraining the Evolution of Velocity through the Transport
of Absolute Vorticity

In the preceding section we were able to accomplish threls géiast, we were able
to exhibit that absolute circulation is conserved for arpseld loop in the discrete
system. Second, the conservation statements relatea tdation and vorticity hold
exactly in the discrete system, even though neither arenegtaas prognostic vari-
ables. And finally, these conservation statements holdowithaving to specify the
form of the reconstructed tangential velocity or the valtialmsolute vorticity used
to compute the velocity tendency due to the nonlinear Cigrfotce. Given this last
statement, it should be clear that conservation alone igfio®nt in specifying an
adequate numerical model. The general framework allows apécify/j andT to
meet other constraints that we deem important. The follgwdiscussion is meant
to demonstrate the flexibility, or lack thereof, in the cleoif 4 andT. It turns out
that there is some flexibility in the choice of the former asgamntially no flexibility
in the choice of the latter. As above, constant density anddigergent flow are
assumed.

7.1 Considerations when specifying

The specification of] should be made with two concerns in mind. The first is that
since the nonlinear Coriolis foragk x u is alway orthogonal tai, the nonlinear
Coriolis force neither produces nor destroys kinetic epeirg. u- (nk xu) = 0.
This is essentially a concern related to the energeticsefithcrete system. The
second concern is how the specification/pfwill influence the structure of the
evolving vorticity field. For example, we would like to makense guarantees on
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the long-time smoothness of the discrete vorticity fieldsTfessentially a concern
related to the vorticity dynamics of the discrete systene gbal, in my view, should
be the rigorous guarantee of both of these concerns. Inttteaguarantee that the
choice off} neither produces or destroys kinetic eneagyglthat this same choice in
f promotes long-term smoothness in the vorticity field. Gitlemanalysis and the
anecdotal evidence presented in (Ringler et al, 2010)gthaé might be possible.
For the discussion presented here, the focus will be on ahggssuch that the
evolution of absolute vorticity is monotone in timiéln the context of transport,
monotonicity implies that the vorticity field at some tirhean be determined as a
convex interpolatiorof the vorticity field at some previous time (Godunov, 1959).
Since the interpolation processdgnvexvorticity values at some previous time are
given weights between zero and one. Thus monotonicity esphat the solution of
vorticity at any timet is bounded from above and below by the vorticity at any pre-
vious time. While it is true that only in the special case ofiftivergent flow should
we expect absolute vorticity to evolve monotonically inginextensions of this idea
to potential vorticity holds for general 3D flows. If we asseian arbitrary velocity
field that is non-divergent, then the continuous vorticijyation (58) reduces to

an . an 7D_r77
E_FD (nu)—ﬁ‘i‘UDn—Dt—oa (91)

which states that the absolute vorticity attributed to dipler(e.g. Figure 1) is in-
variant in time. Since we are not in a Lagrangian referenamé& where tracking
particles is an option, the discrete model will have to agieto mimic (91) in an
Eulerian setting. When a property is conserved along partiajectories it means
that the quantity itself (e.g7) and all moments of that quantity (e.g" wheren is
any integer) are also conserved along particle trajectoviéth only one degree of
freedom in the discrete system (ifg), we are woefully ill-equipped to mimic the
richness contained in the continuous system and, therefarst make some tough
choices regarding how to specify. The goal here is not to determine an optimal
specification of} but rather to demonstrate that we gararanteea monotone evo-
lution of vorticity even when the only prognostic varialdetihe normal component
of velocity at cell edges.

Assuming that the discrete velocity field is non-diverggngranteeing a mono-
tone evolution of the discrete absolute vorticity field imgghtforward. Focusing on
edge(ky), we specifyf, as

if Ti, >0, ik, = Nj; (92)
if Ty <0, fli, = Nj, (93)

17 Discussing the evolution of potential vorticity, as oppb$e absolute vorticity, would be more
relevant here. But for the reasons discussed in the Inttmsyonve will limit the scope to the
evolution of absolute vorticity. Only in the special casenoh-divergent flow is the evolution of
absolute vorticity monotone. In addition, the topic of spart (monotone or otherwise) warrants
an entire chapter to itself.
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in that we always choose the valueipby picking the vorticity valuaipstream of
T. While this is essential the low-order, monotone solutieediin (Zalesak, 1979),
it immediately generalizes to higher-order. Without log@enerality, assume that
T > 0 at some instant in time, then the evolution equatioNfis written as

N .
aﬁtkl =Nj; T — [P, — P,] /dag. (94)

If A} is chosen based on the approach in (92), then the absoluteityorssociated
with the evolvingNg velocity field will be monotone. To be clear, the donor cell
approach results in excessive diffusion and this discasision no way meant to
advocate for the use of (92); it is employed here for dematistr purposes only.
In practice, we can apply state-of-the-art transport atlgars for the computation
of the absolute vorticity fluxj T, and use that flux as the nonlinear Coriolis force
in the velocity tendency equation.

7.2 Considerations when specifying

It turns out that there is essentially no flexibility in theoate of T. The mesh used
here is essentially identical to that used in (Arakawa andth,g981). In that work,
the reconstructed velocity is specified as

~ 1
Tkl = _4_1 (Nk7+Nk2+Nk4+Nk5) . (95)

See Figure 8. The reasoning behind this choice is not péatlguclear in the
(Arakawa and Lamb, 1981) manuscript. Based on the more recetysis con-
ducted on general unstructured meshes with C-grid stagggein (Thuburn et al,
2009) and (Ringler et al, 2010), it is clear that the crificahportant aspect of the
reconstructed field is that the[O - (T eT)]j be an interpolation of the neighboring

[0- (Nen)]; values; the divergence computed at vorticity points baset mustbe
an interpolation of the divergence computed at mass poagsdor.

The importance and significance of this requirement can éa&rlgl seen in the
following example. Suppose the continuous system is chaiaed with an initial
condition of uniform absolute vorticity field being transfed by a non-divergent
flow. From (58) we see that the solution for all time is sim%%/: 0. Also suppose
that the discrete velocity fieltll is chosen such that it produces a uniform abso-
lute vorticity field and is also non-divergent. The discrggstem from (86) can be
expressed as

oNiy  No [+ ) 3 A
gt’ +£—h[(Tdc)kl+(Tdc)k2—(Tdc)ka—(Tdc)kJ:o (96)

The only way to reproduce the solution% = 0 for all time is to require that
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[(fdg),, + (Tdg),,— (fdg,, — (Tdg,,| =o0. (97)

Equation (97) requires that the divergence of the recocid, tangential velocity
at vorticity points is also zero. If one can build a genergbathm for the recon-
struction ofT that produces(- (T er) ], = 0 when[0- (Ney)]; = 0, then we have
sufficient proof that the divergence computed at vorticiijnps will be a convex in-
terpolation of the divergence computed at mass points. ttinfately, the failure of
some C-grid staggered model to enforce this essentialreatuhe reconstruction
of the tangential velocity has lead to (sometime sevengsfdtions in the robustness
of the numerical model and the quality of the numerical sohg.

8 Final Thoughts

This analysis provided an end-to-end discussion of onecaspthe construction of
a dynamical core, namely the derivation and approximatidheequations related
to the evolution of momentum. As much as possible, the aisalysleveloped with
the aid of the Reynolds Transport Theorem. In addition tovigiing a rigorous
means to recasting conservation statements made in thagign reference frame
to statements applicable to the Eulerian reference frangeReynolds Transport
Theorem produces evolution equations cast in a weak, @téggm that fit naturally
into traditional finite-volume approaches.

The analysis lingered and continually revisited the relahip between the evo-
lution of velocity and vorticity dynamics. The reason forckua strong emphasis
on this relationship is that while the evolution of momenthas to be faithful to
F = ma, it also has to respect the kinematic constraints impliectdayservation
statements related to vorticity and circulation. Firsg tklationship has to be un-
derstood in the continuous setting, then the relationsagtb be accommodated in
the development of the discrete system of equations.

The system of equations that one chooses as the startingfppconstructing
a discrete model is a critical moment in the construction dymamical core. This
choice will have a profound impact on the quality of the siatigins. Understand-
ing the anticipated use of the numerical model is a preréguis making sound,
defensible choices for the components of a dynamical canethis reason, an en-
tire section related to the "process of discretizationnislided. While the actual
choices made in that section are highly biased, the purgddke section is to hope-
fully motivate the extreme importance of choosing numéncathods based on a
target application.
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